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ABSTRACT 

In today's interconnected world, the widespread adoption of Internet of Things (IoT) devices has 
brought forth a host of conveniences and opportunities. However, this technological revolution has also 
opened the door to a new type of malware attacks, with attackers exploiting vulnerabilities in IoT 
devices to compromise user privacy, disrupt critical services, and wreak havoc. Traditional security 
measures have proven inadequate to combat the evolving complexity of these malware attacks, 
necessitating a more advanced and adaptive approach. This urgency has given rise to the development 
of a Machine Learning Model for Malware attack Detection and Classification in IoT Environments 
(ML-IoT-CD). In addition, the need for a robust cybersecurity solution in IoT environments has become 
paramount due to the increasing reliance on these devices for critical applications. Existing intrusion 
detection systems and conventional security measures often lack the scalability and agility needed to 
keep pace with rapidly evolving attack techniques. As a result, there is a pressing demand for an 
intelligent, automated, and proactive cyber defense mechanism capable of real-time detection and 
classification of emerging malware attacks. The ML-IoT-CD model aims to fulfill this need by 
harnessing the power of machine learning algorithms to analyze vast amounts of data generated by IoT 
devices. By doing so, it can effectively distinguish between legitimate and malicious activities, thereby 
bolstering the security posture of IoT ecosystems. 

Keywords: IoT Security, Malware Detection, Machine Learning, Intrusion Detection, Cybersecurity, 
Real-time Classification, ML-IoT-CD, Anomaly Detection, Attack Mitigation, Threat Intelligence. 

1.Introduction 

1.1 Overview 

The general idea of the Internet of Things (IoT) is to allow for communication between human-to-thing 

or thing-to-thing(s). Things denote sensors or devices, whilst human or an object is an entity that can 

request or deliver a service [1]. The interconnection amongst the entities is always complex. IoT is 

broadly acceptable and implemented in various domains, such as healthcare, smart home, and 

agriculture. However, IoT has a resource constraint and heterogeneous environments, such as low 

computational power and memory. These constraints create problems in providing and implementing a 

security solution in IoT devices. These constraints further escalate the existing challenges for IoT 

environment. Therefore, various kinds of attacks are possible due to the vulnerability of IoT devices. 

IoT-based botnet attack is one of the most popular, spreads faster and create more impact than other 

attacks. In recent years, several works have been conducted to detect and avoid this kind of attacks [2]–
[3] by using novel approaches. Hence, a plethora of relevant of relevant models, methods, and etc. have 

been introduced over the past few years, with quite a reasonable number of studies reported in the 

research domain. Many studies are trying to protect against these botnet attacks on the IoT environment. 
However, there are many gaps still existing to develop an effective detection mechanism. An intrusion 
detection system (IDS) is one of the efficient ways to deal with attacks. However, the traditional IDSs 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, June, 2025

ISSN No: 2250-3676 www.ijesat.com Page 145 of 158



are often not able to be deployed for the IoT environments due to the resource constraint problem of 
these devices. The complex cryptographic mechanisms cannot be embedded in many IoT devices either 
for the same reason. There are mainly two kinds of IDSs: the anomaly and misuse approaches. The 
misuse-based, also called the signature-based, approach, is based on the attacks’ signatures, and they 
can also be found in most public IDSs, specifically Suricata [4]. Formally, the attacker can easily 
circumvent the signature-based approaches, and these mechanisms cannot guarantee to detect the 
unknown attacks and the variances of known attacks. The anomaly-based systems are based on normal 
data and can support to identify the unknown attacks. However, the different nature of IoT devices is 
being faced with the difficulty of collecting common normal data. The machine learning-based 
detection can guarantee detection of not only the known attacks and their variances. Therefore, we 
proposed a machine learning-based botnet attack detection architecture. We also adopted a feature 
selection method to reduce the demand for processing resources for performing the detection system on 
resource constraint devices. The experiment results indicate that the detection accuracy of our proposed 
system is high enough to detect the botnet attacks. Moreover, it can support the extension for detecting 
the new distinct kinds of attacks. 

2.Literature Survey 

Soe et al. [5] adopted a lightweight detection system with a high performance. The overall detection 
performance achieves around 99% for the botnet attack detection using three different ML algorithms, 
including artificial neural network (ANN), J48 decision tree, and Naïve Bayes. The experiment result 
indicated that the proposed architecture can effectively detect botnet-based attacks, and also can be 
extended with corresponding sub-engines for new kinds of attacks.Ali et al. [6] outlined the existing 
proposed contributions, datasets utilised, network forensic methods utilised and research focus of the 
primary selected studies. The demographic characteristics of primary studies were also outlined. The 
result of this review revealed that research in this domain is gaining momentum, particularly in the last 
3 years (2018-2020). Nine key contributions were also identified, with Evaluation, System, and Model 
being the most conducted. Irfan et al. [7] classified the incoming data in the IoT, contain a malware or 
not. In this research, this work under sample the dataset because the datasets contain imbalance class. 
After that, this work classified the sample using Random Forest. This work used Naive Bayes, K-
Nearest Neighbor and Decision Tree too as a comparison. The dataset that has been used in this research 
are from UCI Machine Learning Depository's Website. The dataset showed the data traffic from the IoT 
Device in a normal condition and attacked by Mirai or Bashlite.Shah et al. [8] presented a concept called 
‘login puzzle’ to prevent capture of IoT devices in a large scale. Login puzzle is a variant of client 
puzzle, which presented a puzzle to the remote device during the login process to prevent unrestricted 
log-in attempts. Login puzzle is a set of multiple mini puzzles with a variable complexity, which the 
remote device is required to solve before logging into any IoT device. Every unsuccessful log-in attempt 
increases the complexity of solving the login puzzle for the next attempt. This paper introduced a novel 
mechanism to change the complexity of puzzle after every unsuccessful login attempt. If each IoT 
device had used login puzzle, Mirai attack would have required almost two months to acquire devices, 
while it acquired them in 20 h. 

Tzagkarakis et al. [9] presented an IoT botnet attack detection method based on a sparsity representation 
framework using a reconstruction error thresholding rule for identifying malicious network traffic at 
the IoT edge coming from compromised IoT devices. The botnet attack detection is performed based 
on small-sized benign IoT network traffic data, and thus we have no prior knowledge about malicious 
IoT traffic data. We present our results on a real IoT-based network dataset and show the efficacy of 
proposed technique against a reconstruction error-based autoencoder approach.Meidan et al. [10] 
proposed a novel network-based anomaly detection method for the IoT called N-BaIoT that extracts 
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behavior snapshots of the network and uses deep autoencoders to detect anomalous network traffic from 
compromised IoT devices. To evaluate the method, this work infected nine commercial IoT devices in 
our lab with two widely known IoT-based botnets, Mirai and BASHLITE. The evaluation results 
demonstrated the proposed methods ability to detect the attacks accurately and instantly as they were 
being launched from the compromised IoT devices that were part of a botnet. Popoola et al. [11] 
proposed the federated DL (FDL) method for zero-day botnet attack detection to avoid data privacy 
leakage in IoT-edge devices. In this method, an optimal deep neural network (DNN) architecture is 
employed for network traffic classification. A model parameter server remotely coordinates the 
independent training of the DNN models in multiple IoT-edge devices, while the federated averaging 
(FedAvg) algorithm is used to aggregate local model updates. A global DNN model is produced after 
several communication rounds between the model parameter server and the IoT-edge devices. The zero-
day botnet attack scenarios in IoT-edge devices are simulated with the Bot-IoT and N-BaIoT data sets. 
Hussain et al. [12] produced a generic scanning and DDoS attack dataset by generating 33 types of 
scans and 60 types of DDoS attacks. In addition, this work partially integrated the scan and DDoS attack 
samples from three publicly available datasets for maximum attack coverage to better train the machine 
learning algorithms. Afterwards, this work proposed a two-fold machine learning approach to prevent 
and detect IoT botnet attacks. In the first fold, this work trained a state-of-the-art deep learning model, 
i.e., ResNet-18 to detect the scanning activity in the premature attack stage to prevent IoT botnet attacks. 
While, in the second fold, this work trained another ResNet-18 model for DDoS attack identification to 
detect IoT botnet attacks. Abu et al. [13] proposed an ensemble learning model for botnet attack 
detection in IoT networks called ELBA-IoT that profiles behavior features of IoT networks and uses 
ensemble learning to identify anomalous network traffic from compromised IoT devices. In addition, 
this IoT-based botnet detection approach characterizes the evaluation of three different machine learning 
techniques that belong to decision tree techniques (AdaBoosted, RUSBoosted, and bagged). To evaluate 
ELBA-IoT, we used the N-BaIoT-2021 dataset, which comprises records of both normal IoT network 
traffic and botnet attack traffic of infected IoT devices. Alharbi et al. [14] proposed Gaussian 
distribution used in the population initialization. Furthermore, the local search mechanism was followed 
by the Gaussian density function and local-global best function to achieve better exploration during 
each generation. Enhanced BA was further employed for neural network hyperparameter tuning and 
weight optimization to classify ten different botnet attacks with an additional one benign target class. 
The proposed LGBA-NN algorithm was tested on an N-BaIoT data set with extensive real traffic data 
with benign and malicious target classes. The performance of LGBA-NN was compared with several 
recent advanced approaches such as weight optimization using Particle Swarm Optimization (PSO-NN) 
and BA-NN. Ahmed et al. [15] proposed a model for detecting botnets using deep learning to identify 
zero-day botnet attacks in real time. The proposed model is trained and evaluated on a CTU-13 dataset 
with multiple neural network designs and hidden layers. Results demonstrated that the deep-learning 
artificial neural network model can accurately and efficiently identify botnets. 

3.PROPOSED SYSTEM 

3.1 Detecting cyberattacks using a combination of data preprocessing techniques, such as Standard 

Scaling, and a RFC classifier is a common approach in cybersecurity. Figure 4.1 shows a malware-

attack attack detection system model. 

Step 1: Preprocessing: Gather a dataset of network traffic or system logs, where each data point is 

labeled as either a normal activity or a malware-attack. Preprocess the data to make it suitable for 

training a RFC classifier. This may include handling missing values, encoding categorical variables, 

and scaling numerical features. 
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Step 2: Standard Scaling: Extract relevant features from the dataset. Common features for malware-

attack detection may include network traffic statistics, log event patterns, and more. Feature selection 

or dimensionality reduction techniques can be applied if the dataset has many features. Use Standard 

Scaling to standardize the numerical features in the dataset. Standard Scaling is preferred over standard 

scaling when dealing with data that may have outliers. Standard Scaling scales the features in a way 

that is less affected by extreme values, making it a suitable choice for cybersecurity datasets. 

Step 3: Split the Data: Divide your dataset into training, validation, and test sets. A common split 

might be 80% for training, and 20% for testing. 

Step 4: RFC Classifier: Design and build an RFC classifier.  

Step 5: Training: Train the RFC classifier using the training dataset. During training, monitor 

performance on the validation set to avoid overfitting and adjust hyperparameters accordingly. 

Step 6: Evaluation: Evaluate the trained model on the test dataset to assess its performance. Common 

evaluation metrics for malware-attack detection include accuracy, precision, recall, F1-score, and 

confusion matrix. 

 

Fig. 1: Block diagram of proposed system. 

3.2 Data Preprocessing  

Data pre-processing is a process of preparing the raw data and making it suitable for a machine learning 

model. It is the first and crucial step while creating a machine learning model. When creating a machine 

learning project, it is not always a case that we come across the clean and formatted data. And while 
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doing any operation with data, it is mandatory to clean it and put in a formatted way. So, for this, we 

use data pre-processing task. 

A real-world data generally contains noises, missing values, and maybe in an unusable format which 

cannot be directly used for machine learning models. Data pre-processing is required tasks for cleaning 

the data and making it suitable for a machine learning model which also increases the accuracy and 

efficiency of a machine learning model. 

One-Hot Encoding: Categorical variables are one-hot encoded to convert them into a numerical format 

suitable for machine learning models. The code uses the pd.get_dummies() function to create binary 

columns for each category within categorical variables. This transformation allows machine learning 

algorithms to work with categorical data effectively. 

3.3 Random Forest Algorithm 

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 

technique. It can be used for both Classification and Regression problems in ML. It is based on the 

concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex 

problem and to improve the performance of the model. As the name suggests, "Random Forest is a 

classifier that contains a number of decision trees on various subsets of the given dataset and takes the 

average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the 

random forest takes the prediction from each tree and based on the majority votes of predictions, and it 

predicts the final output. The greater number of trees in the forest leads to higher accuracy and prevents 

the problem of overfitting. 

 

Fig. 2: Random Forest algorithm. 

3.1.1 Random Forest algorithm 

Step 1: In Random Forest n number of random records are taken from the data set having k number of 

records. 

Step 2: Individual decision trees are constructed for each sample. 

Step 3: Each decision tree will generate an output. 
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Step 4: Final output is considered based on Majority Voting or Averaging for Classification and 

regression respectively. 

3.1.2 Important Features of Random Forest 

• Diversity- Not all attributes/variables/features are considered while making an individual tree, 

each tree is different. 

• Immune to the curse of dimensionality- Since each tree does not consider all the features, the 

feature space is reduced. 

• Parallelization-Each tree is created independently out of different data and attributes. This 

means that we can make full use of the CPU to build random forests. 

• Train-Test split- In a random forest we don’t have to segregate the data for train and test as 

there will always be 30% of the data which is not seen by the decision tree. 

• Stability- Stability arises because the result is based on majority voting/ averaging. 

3.1.3 Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible that 

some decision trees may predict the correct output, while others may not. But together, all the trees 

predict the correct output. Therefore, below are two assumptions for a better Random Forest classifier: 

• There should be some actual values in the feature variable of the dataset so that the classifier 

can predict accurate results rather than a guessed result. 

• The predictions from each tree must have very low correlations. 

Below are some points that explain why we should use the Random Forest algorithm 

• It takes less training time as compared to other algorithms. 

• It predicts output with high accuracy, even for the large dataset it runs efficiently. 

• It can also maintain accuracy when a large proportion of data is missing. 

3.1.4 Types of Ensembles 

Before understanding the working of the random forest, we must look into the ensemble technique. 

Ensemble simply means combining multiple models. Thus, a collection of models is used to make 

predictions rather than an individual model. Ensemble uses two types of methods: 

Bagging– It creates a different training subset from sample training data with replacement & the final 

output is based on majority voting. For example, Random Forest. Bagging, also known as Bootstrap 

Aggregation is the ensemble technique used by random forest. Bagging chooses a random sample from 

the data set. Hence each model is generated from the samples (Bootstrap Samples) provided by the 

Original Data with replacement known as row sampling. This step of row sampling with replacement 

is called bootstrap. Now each model is trained independently which generates results. The final output 

is based on majority voting after combining the results of all models. This step which involves 

combining all the results and generating output based on majority voting is known as aggregation. 

Boosting– It combines weak learners into strong learners by creating sequential models such that the 

final model has the highest accuracy. For example, ADA BOOST, XG BOOST. 

4.RESULT AND DISCUSSION 

4.1 Dataset Description 
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The UNSW-NB15 dataset is a network traffic dataset that is commonly used for malware-attack 

detection system evaluation. Here's a brief description of each column in the dataset: 

• id: A unique identifier for each record in the dataset. 

• dur: Duration of the connection in seconds. Represents the time elapsed for the connection. 

• proto: The transport layer protocol used in the connection, such as TCP, UDP, ICMP, etc. 

• service: The network service on the destination, indicating the type of service being accessed 

(e.g., HTTP, FTP). 

• state: The connection state, indicating the status of the connection (e.g., FIN, CON, INT). 

• spkts: The count of packets sent from the source to the destination. 

• dpkts: The count of packets sent from the destination to the source. 

• sbytes: The number of source-to-destination bytes in the connection. 

• dbytes: The number of destination-to-source bytes in the connection. 

• rate: Data transfer rate, representing the average number of bits transferred per second. 

• sttl: Source time to live, indicating the remaining time to live of the source in the connection. 

• dttl: Destination time to live, indicating the remaining time to live of the destination in the 

connection. 

• sload: Source bits per second, representing the data load on the source side. 

• dload: Destination bits per second, representing the data load on the destination side. 

• sloss: Source packets retransmitted or lost during the connection. 

• dloss: Destination packets retransmitted or lost during the connection. 

• sinpkt: Source inter-packet arrival time, indicating the time between consecutive packets from 

the source. 

• dinpkt: Destination inter-packet arrival time, indicating the time between consecutive packets 

from the destination. 

• sjit: Source jitter, representing the variability in inter-packet arrival times on the source side. 

• djit: Destination jitter, representing the variability in inter-packet arrival times on the 

destination side. 

• swin: Source TCP window size, indicating the size of the TCP window on the source side. 

• stcpb: Source TCP base sequence number, indicating the initial sequence number of the 

connection on the source side. 

• dtcpb: Destination TCP base sequence number, indicating the initial sequence number of the 

connection on the destination side. 

• dwin: Destination TCP window size, indicating the size of the TCP window on the destination 

side. 

• tcprtt: TCP connection setup round-trip time, representing the time taken for the TCP 

connection setup. 
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• synack: Time taken for the TCP connection setup (SYN-ACK phase). 

• ackdat: Time taken for the TCP connection setup (ACK-DAT phase). 

• smean: Mean of the source payload data size, representing the average size of data sent from 

the source. 

• dmean: Mean of the destination payload data size, representing the average size of data 

received at the destination. 

• trans_depth: Connection transaction depth, indicating the depth of the transaction in the 

connection. 

• response_body_len: Length of the response body, indicating the size of the response payload. 

• ct_srv_src: Number of connections to the same service as the current connection in the past 

two seconds. 

• ct_state_ttl: Number of connections with the same source TTL (Time to Live) value. 

• ct_dst_ltm: Number of connections with the same destination IP address in the past two 

seconds. 

• ct_src_dport_ltm: Number of connections with the same source port to the same destination 

port in the past two seconds. 

• ct_dst_sport_ltm: Number of connections with the same destination port to the same source 

port in the past two seconds. 

• ct_dst_src_ltm: Number of connections with the same source and destination IP addresses in 

the past two seconds. 

• is_ftp_login: Binary indicator of whether the FTP login was successful or not. 

• ct_ftp_cmd: Number of FTP commands carried in the connection. 

• ct_flw_http_mthd: Number of HTTP methods carried in the connection. 

• ct_src_ltm: Number of connections with the same source IP address in the past two seconds. 

• ct_srv_dst: Number of connections with the same source and destination service in the past 

two seconds. 

• is_sm_ips_ports: Binary indicator of whether the source and destination ports are the same. 

• attack_cat: The category of the attack, such as DoS (Denial of Service), Probe, R2L 

(Unauthorized access from a remote machine), U2R (Unauthorized access to privileged local 

resources). 

• label: Binary label indicating normal (0) or malicious (1) activity in the network connection. 

4.2 Results and Description 
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Figure 10.1. Sample dataset. 

 

Fig. 3: Attack classes in dataset. 

 

Fig. 4: Dataset after label encoding. 

 

Fig. 5: Train and Test sizes in dataset. 
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Fig. 6: Existing DTC confusion matrix. 

 

Fig. 7: Existing DTC classification report. 
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Fig. 8: Existing LRC confusion matrix. 

 

Fig. 8: Existing LRC classification report. 
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Fig. 9: Proposed RFC confusion matrix. 

 

 

Fig. 10: Proposed RFC classification report. 
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5.CONCLUSION  

The approach of using standard scaling and a RFC classifier for malware-attack detection is a promising 

one. It leverages advanced machine learning techniques to identify malicious activities in network 

traffic or system logs. By preprocessing the data effectively and training a RFC model, it is possible to 

achieve accurate and timely detection of cyber threats. However, it's important to note that the 

effectiveness of such a system depends on various factors, including the quality and diversity of the 

training data, the design of the RFC architecture, and the continuous monitoring and updating of the 

model. 
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